3 research outputs found

    How automated image analysis techniques help scientists in species identification and classification?

    Get PDF
    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification incre­ased over the last two decades. Automation of data classification is primarily focussed on images while incorporating and analysing image data has recently become easier due to developments in computational technology. Research ef­forts on identification of species include specimens’ image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, mainly for categorising and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies. (Folia Morphol 2018; 77, 2: 179–193

    Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

    Get PDF
    Over the last two decades, improvements in developing computational tools have made significant contributions to the classification of images of biological specimens to their corresponding species. These days, identification of biological species is much easier for taxonomists and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we developed a fully automated identification model for monogenean images based on the shape characters of the haptoral organs of eight species: Sinodiplectanotrema malayanum, Diplectanum jaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. Linear Discriminant Analysis (LDA) method was used to reduce the dimension of extracted feature vectors which were then used in the classification with K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN) classifiers for the identification of monogenean specimens of eight species. The need for the discovery of new characters for identification of species has been acknowledged for log by systematic parasitology. Using the overall form of anchors and bars for extraction of features led to acceptable results in automated classification of monogeneans. To date, this is the first fully automated identification model for monogeneans with an accuracy of 86.25% using KNN and 93.1% using ANN

    HaTU-Net: Harmonic Attention Network for Automated Ovarian Ultrasound Quantification in Assisted Pregnancy

    No full text
    Antral follicle Count (AFC) is a non-invasive biomarker used to assess ovarian reserves through transvaginal ultrasound (TVUS) imaging. Antral follicles’ diameter is usually in the range of 2–10 mm. The primary aim of ovarian reserve monitoring is to measure the size of ovarian follicles and the number of antral follicles. Manual follicle measurement is inhibited by operator time, expertise and the subjectivity of delineating the two axes of the follicles. This necessitates an automated framework capable of quantifying follicle size and count in a clinical setting. This paper proposes a novel Harmonic Attention-based U-Net network, HaTU-Net, to precisely segment the ovary and follicles in ultrasound images. We replace the standard convolution operation with a harmonic block that convolves the features with a window-based discrete cosine transform (DCT). Additionally, we proposed a harmonic attention mechanism that helps to promote the extraction of rich features. The suggested technique allows for capturing the most relevant features, such as boundaries, shape, and textural patterns, in the presence of various noise sources (i.e., shadows, poor contrast between tissues, and speckle noise). We evaluated the proposed model on our in-house private dataset of 197 patients undergoing TransVaginal UltraSound (TVUS) exam. The experimental results on an independent test set confirm that HaTU-Net achieved a Dice coefficient score of 90% for ovaries and 81% for antral follicles, an improvement of 2% and 10%, respectively, when compared to a standard U-Net. Further, we accurately measure the follicle size, yielding the recall, and precision rates of 91.01% and 76.49%, respectively
    corecore